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Preview

This chapter introduces [t6 integrals, one of the fundamental concepts in stochastic calculus.
We begin with the L? construction of Itd integrals with Brownian motion as the integrator,
followed by a discussion of their key properties and computational rules. A crucial distinction
from classical calculus lies in the finite, non-vanishing quadratic variation of Brownian mo-
tion, which gives rise to an additional term in It6’s lemma — the chain rule of Itd’s calculus.
We conclude with illustrative examples demonstrating applications of [t6’s lemma.

Key topics in this chapter:
1. Constructions of It6 integrals;

2. Diffusion processes and distributions;
3. Ito’s lemma;

4. Applications of 1t6’s lemma.

1 Constructions of Ito6 Integrals

The most fundamental application of ordinary calculus is to describe rates of change in model-
ing real-world phenomena, for example, population growth, motions, or chemical reactions.
However, ordinary calculus falls short when modeling systems influenced by randomness,
such as financial markets. This motivates the use of stochastic calculus, which extends the
tools of calculus to accommodate randomness.

Stochastic calculus originated in the mid-20th century, primarily developed by Kiyoshi
It6, who introduced It6 integral and It6’s lemma in the 1940s. Let X € L?(Q, F,{F; }i>0, P)
be a square-integrable process and B be a standard (one-dimensional) Brownian motion. We
want to define the Ité integral (more generally, a stochastic integral) of the form

Ip(X) = /OTXt dB,. (1)



One tempting approach is defined it in a pathwise sense, i.e., by setting

Ir(X)(w) :/O X, (w) dBy(w), w € Q.

However, as we have learnt in the last chapter, B; is nowhere differentiable a.s., meaning
that dB;(w), and thus the above pathwise integral being ill-defined. Therefore, this section
is devoted to giving a proper definition of , specifically in the L2-sense.

The procedures of constructing [t6 integrals largely resemble the construction of Lebesgue
integrals. Herein, we follow a 3-step approach for the classes of adapted processes X listed
below:

1. X is a simple process;
2. X is a bounded process;

3. X is a square-integrable, adapted process.

1.1 Simple Processes

Fix T > 0. We first construct Itd integrals for simple processes.

Definition 1.1 (Simple processes) An adapted process { X}, in the probability
space (2, F,{Fi}icpo,r), P) is said to be a simple process if it is piecewise constant on
[0,T]. To be exact, there exists a partition IT = {ty,...,t,,} of [0,T] with t, =0, t,, =T
such that

m—1
Xi = &Lyt + D &l (t), (2)
k=0
where §, is F;,-measurable, and sup;_q _,,_1 || < C a.s. for some finite constant C' > 0

Remark 1.1. A simple process is essentially predictable, i.e., the value of the process at time
t is known immediately before that time. A predictable process is also adapted, but the
converse is not true in general. From , the value Xy, 45 is known at ¢; for any sufficiently
small § > 0. The theory of It6 calculus presented below is thus built on predictable processes.
Nevertheless, an adapted process with continuous sample paths (i.e., no jump) is predictable.
Since we will mostly consider continuous processes in our course, we shall not distinguish
the two notions in the rest of the discussions.

The Itd integral for a simple process is defined as follows.



Definition 1.2 (Itd integral of a simple process) Let X be a simple process with
the representation (2). For ¢ € [0, T}, the Ito integral of X is defined as

t m—1
1(X) = /0 X,dBy = 3 &(Bipoini — Bune). 3)
k=0

Equivalently, if n is the index such that ¢, <t < t,,1, then
t m—1 n—1
/ XodBo = &(Buon — Bi) = > _ & (B, — By) + & (B — By,).
0 k=0 k=0

By definition, it is clear that the process {I;(X)}icjo,1] is {Ft }icpo,r-adapted. The follow-
ing presents the major properties of It6 integrals.

Theorem 1.2 Let X be a simple process and ¢t € [0,T]. We have the following properties
concerning the It6 integral I,(X):

1. (Adaptability) {I;(X)}icjo.1] is {Ftbecp,m-adapted;

2. (Continuity) the sample paths t — [,(X) is continuous a.s.;

3. (Linearity) for any simple process Y and «, 8 € R,

L(aX + pY) =al(X)+ BL(Y);

4. (Martingale) {I;(X)}icjo,r) is a square-integrable martingale with respect to
{Fi}ie0,), in particular, E[I,(X)] = 0 for all ¢ € [0, T7;
5. (Itd’s isometry)

t
Bl0] =8 | [ x2s]
0
6. (Quadratic variation)

(I(X))y = /Ot X2ds.

Proof. The adaptability is clear from the definition . The continuity of the sample paths
follows from the continuity of ¢ — B, a¢ — By ae and , thanks to the continuity of the
sample paths of Brownian motions.

We prove the remaining properties below.

3. Let Iy = {to,...,tm} and IIy = {so, ..., s,} be two partitions of [0, 7] such that

m—1 n—1
Xy = €olLiop (1) + D &l () and Vi = Golgoy (£) + Y Gl (synp,n)(0)-
k=0 k=0



Then, we can define a finer and common partition IT := Ty U Iy = {rg, ..., 7}, where
I <m+mn. Then, X and Y can be rewritten in terms of II as

-1 -1
Xt = Z er l(rk,ﬁcﬂ](t)’ Y;f = Z Y;"k ﬂ(rk,rkﬂ](t).
k=0 k=0

Let o, 8 € R. By definition of the It6 integral for simple processes,

~

1
It(aX + 5Y> = (aer + BY;%) (BTk+1/\t - BTk/\t)‘
0

e
Il

Distributing the sum, we obtain

-1 -1
L(aX +8Y)=a Y X, (Brine — Brnt) + 8 Yo (Brooint — Bront)
k=0 k=0

= al,(X) + BL(Y).

4. By the first property, the process {I;(X)}icor) is adapted. The integrability is also
clear: for any t € [0, 7], using the fact that || < C a.s. and below, we have

[y

n—1

EIL(X)P] = Y E&) (ke — t) +EE](E —1,) < C° ) (tr — 1) + C(t ) = C*1,

3

i

where n is the integer such that ¢, <t <t,.;.

Finally, we verify the martingale condition. For any s,t € [0,7] with s <t , let I <n
be the unique integers such that ¢, < s <ty and t, <t <t,,1. lf n <,

n—1
E[L(X)|F)=E | > & (By., — By) + &(B: — By,)| F
L k=0

-1

=E ng (Btk+1 - Btk) +& (BS o Btl) |]:S

L k=0 J
n—1
+E |&(Biy, — B)+ Y &(By,, — By) +&(By — By,)|F| .
k=l+1

For any k <1 —1, t, <ty < s <t,sothat §(By,,, — B,) is Fs-measurable. Hence,

-1 -1
E > & (Bi,, — By) +&(Bs = By)|F| => & (Bi,, — By) +&(Bs — By)
k=0 k=0




= (X).

Next, for k > [, s <1, so that F;, C F;, Hence, by the tower property of conditional
expectations,

n—1
E |&(By,, — B+ Y &(Bu,, — By) +&(Bi — By,)|Fs
k=l+1

m—1

=&4E [By,, — BJF] + Y E[&%(Buy,, — Bi)|Fs] +E[&(B: — By, F]

k=l+1

= i E [E [&(Bt., — By )| F] |Fs] + E[E[&(B — By,)| F,] |1 F]

since Btk+1 — Btk ’Ek = Btk+1 - Btk ~ N(O, tk+1 — tk)
Combining the above, we arrive at E[I;(X)|Fs| = I;(X) whenever [ < n. If | = n, then
]t(X) - IS(X) = én(Bt - Btn) - gn(Bs - Btn) = gn(Bt - Bs)‘
Hence,
E[L(X)|F] = L(X) + E[§(B: — By)|Fi] = L(X),
and we arrive at the same conclusion.

In particular, a martingale has constant expectations, so that E[[;(X)] = E[I,(X)] =0
for any ¢t > 0.

5. Let n be the unique integer such that t,, <t <t,,;. Consider the LHS of the formula:

E[}(X)
i n—1 2
=E ( &k (Btk+1 Btk) + fn(Bt Btn)>
| \k=0
[ n—1 2 n—1
=E ( &k (Btk+1 Btk)) +2 ZE [fnﬁk(Bt — By,) (Btkﬂ Btk)]
| \k=0 k=0 B
N ~ 3
+E[6(B — B.,)*] (4)




Using the tower property, the last term of is given by

I; =E [(B, — B.,)’] =E [GE [(B, — B,,)*|F.]] = E[&](t — t). (5)
For the second term of , we again apply the tower property to obtain

n—1
I, = QZE [gnfk(Bt - Btn) (Btk+1 - Btk)}
k=0

=2 ZE fnﬁk Btn) (Bthrl - Btk) “Fth

n—1

=2 ZE [&nfk (Btk+1 - Btk) E [Bt o Bt"‘E"H
—0. (6)

For the first term of , we expand the expression and obtain

n—1 2
I =E (Z & (Biy, — By,) + &n(By — Btn)>

k=0
[n—1 n—1
=E 513 (Btk+1 Btk + 2ZE & (Btk-H Btk) (Btg+1 - Btj)] :
Lk=0 k<j

Following the derivation of by conditioning each summand with respect to F;,
(exercise), it is easy to see that

n—1

Z 513 (Btk+1 Btk

k=0

E

Z E[&](tes — th).

Likewise, following the derivation of @ by conditioning each summand with respect
to Fy, (exercise), we have

n—1

QZE [gkfg (Btk.u - Btk-) (Bthrl - Btj)} = 0.

k<j

Hence,
n—1
L= E&](th — t)- (7)
k=0

Combining , @, and , we obta;n
n—1
BIIF(X)] =) Bt — t) + BN — tn). (8)
k=0

6



Next, we consider the right-hand side of the isometry. Using , we have

! 2
/ X2ds :/ (foﬂ{O} +Z§klltk b (8 )) ds
0
/0 (5011{0} + kall(tk (s )> ds

- fk / (tr,tr+1] (8> ds
k=0

n—1

=) Eiltrgr —tr) T E(E— ).

k=0

t
EU stds} =E
0

6. Since {I;(X) }1epo,7] is a square-integrable martingale, {I7(X)}1e(o.7 is a sub-martingale.

Therefore,

St — 1) + €0t — 1) | = E[I2(X)]

k=0

We show that for any 0 < s <t < T,

E [(I(X) — (X [/ X2 du|.7:] (9)

If this is true, by the martingale property of It6 integrals, we would have
t
E [[t(X)z — / X2 du|]—"8] = 2E[I(X)I(X)|F,] — I2(X / X2 du
0
= 2I%(X) / X2 du

=I3(X / X2 du,

showing that I,(X)? — fg X2 du is a martingale. By the definition of quadratic variations,
we deduce that .
X)), = / X2ds.
0

To prove @), let [ < n be the unique integers such that ¢, < s < ;.7 and ¢, <t < t,,41.
Then,

E[(L(X) — I(X))*|F] = (Z E( By — Bi) + &n( By Btn)> | Fs

k=l+1



The rest of the proof is parallel to the proof of It6’s isometry: we expand the square above
as in , and compute each of the three resulting terms. The only difference is that the
index starts at [ 4+ 1 instead of 0 in this case. We thus omit the proof.

]

1.2 Bounded Processes

X is a bounded process if there exists a constant 0 < C' < oo such that

sup |Xy| < C as.
te[0,7]

A bounded process can be approximated by simple processes in the L2-sense:

Theorem 1.3 Let X be a bounded adapted process. Then, there exists a sequence of
simple processes {X (™}, such that

T
lim E U ‘Xt —x™
0

n—oo

i dt} ~0. (10)

Using this approximation, we define [t6 integrals for bounded adapted processes as fol-
lows.

Definition 1.3 (It6 integrals for bounded processes) Let X be a bounded adapted
process, and {X (”)}zozl be a sequence of simple processes that satisfy . Then, the Ito
integral for X, {I;(X) }sc(0,17, is the unique adapted and continuous process that satisfies

n—oo

lim E UOT (I(X) = I(X™))* dt| = 0.

Remark 1.4. By Ito’s isometry, the sequence {1(X ™)} is a Cauchy sequence in the L2-sense.
Hence, the limit exists uniquely in L2, and is independent of the choice of the approximating
sequence.

The properties in Theorem remain valid.

Theorem 1.5 The properties of 1t6’s integrals in Theorem also hold if X is a
bounded, adapted process.

1.3 Square-Integrable Processes

X is a square-integrable process if there exists a constant 0 < C' < oo such that

T
E U det} <C, tel0,T).
0

8



A square-integrable process can be approximated by bounded processes (and in turn, by
simple processes) in the L*-sense:

Theorem 1.6 Let X be a square-integrable, adapted process. Then, there exists a
sequence of bounded adapted processes {X (™1} | such that

T
lim E [/ ‘Xt —x™
n—0o0 0

Using this approximation, we define It6 integrals for square-integrable, adapted processes
as follows.

i dt} 0. (11)

Definition 1.4 (It6 integrals for square-integrable processes) Let X be a square-
integrable, adapted process, and {X (”)};’f:l be a sequence of bounded processes that
satisfy (1I). Then, the It6 integral for X, {I;(X)}icpr), is the unique adapted and
continuous process that satisfies

lim E UOT (I(X) = I(X™))* dt| = 0.

n—oo

The properties in Theorem remain valid.

Theorem 1.7 The properties of Itd integrals in Theorem [I.2] also hold if X is a square-
integrable, adapted process.

2 Itdé’s Lemma

One of the most important formula in stochastic calculus is It6’s lemma, which is the chain
rule for It6 process. An It6 process is defined as follows:

Definition 2.1 (It6 Process) A continuous adapted process X = {X;}icpm on a
filtered probability space (€2, F, {F:}icjo.r7, P) is called an It6 process if it can be written
in the form

t t
Xi=Xo+ / fsds + / 05 dBy, (12)
0 0

where X, is an Fo-measurable random variable, 1 = {ji}cpm) and o = {04 }secpm are
adapted processed’| that satisfy

B[ [+l ds

“*More precisely, 1 and o need to be predictable.

< Q.




A common and useful convention is to express an Itd process in differential form as
dXt = /,Lt dt + O¢ dBt

In this notation, y, dt is called the drift term, and o; dB; is called the diffusion or volatility
term. In general, X is a martingale only if the drift term is zero: for any 0 < s <'t,

s s t t
E[Xt|fs]:X0+/ ,uudu—l—/ audBu+E[/ uudu+/ adBu}]-"s}
0 0 s s

t
=X, +E U uudu|]-'s] £ X,.

In particular, if p; > 0 (resp. pus < 0) for all ¢ € [0, 7], then X is a sub-martingale (resp. su-
permartingale).

Proposition 2.1 The quadratic variation of the Itd process X in is given by

t
<X>t = / O—? ds.
0

Proof. Let
t t
A, ::/ s ds and M, ::/ 0, dBy,
0 0

so that X; = Xy + A; + M;. Note that both A and M are continuous process, and M is a
martingale with quadratic variation given by

t
(Z\/[)t:/ afds;
0

see Property 6 of Theorem [1.2] Hence, it suffices to prove that (X), = (M);.
For any partition IT = {to,...,¢,} of [0,t], we have

m—1
‘/;5(2)(1_[> = Z [th‘+1 - Xti}Z
1=0
m—1 )
= Z [(Ati+l + Mti+1) - (Atl + Mtz):|
=0
m—1 ) m—1 m—1 )
- [Atz’+1 Atz} +2 Z [Ati+1 - Ati] [Mti+1 Mtz} + [Mti+1 Mtz]
i=0 =0 =0
I I Iy

10



Using the continuity of the process A, we have

m—1 m—1
L= [Au, — A < max A - Ay > A, — A,
=0 i=0
m—1 tiv1
= J_({I}%X |At]+1 At].’ ; /tz [bs ds
= _max |A¢,,, — Ay |/ |ps| ds — 0 (13)
a.s. and in L' when [[II|| — 0, since limm_o max;j—q__m—1 }Atﬁl Atj| = 0. Likewise, by
the continuity of M,
=2 Z At i+l [Mt i1 Mti} < 2j:57r_1%f§_ }Mtﬁrl Mt ’ Z }Atzﬂ - z‘

< max |Mtj+1 M, ‘/ ],us|ds—>0 (14)

as ||IT|| — 0. Finally, by the definition of quadratic variations, we have the following conver-
gence in probability and in L':

m—

HH\HOZ o = Ma]” = (M) (15)

lim
HHH%O

Therefore, combining — yields

X)), = lim VP = lim (I + I, + I3) = (M),.
(X)e Jm (IT) ”H”%h 2+ 1I3) = (M),

]

Definition 2.2 (Cross Variations) Let X and Y be two adapted processes. Let t > 0
and IT = {to,...,t,,} be a partition of [0, ¢]. Define

—_

V() = > (X,

i

3

i+l X, ) (Ytz+1 o Yi) :

Il
=)

Then, the cross variation of X and Y, denoted by (X,Y"), is defined as

(X,Y) = lim Vi(II).

([T1]]—0
Alternatively, the cross variation can also be written as

(X+Y) —(X-Y),
1 .

(X, V), = (16)

11



Remark 2.2.
1. To see that the cross variation can be written as , note that

I:(XtiJrl + }/;ile) - (Xti + }/;z)j|2 + I:(XtiJrl - Y;fiﬂ) - (Xti - 5/;51)}2

=0 7
1

- Z [(Xtiﬂ - th‘)2 +2 (th'+1 - th‘) (Y;fz'ﬂ - Ytz) + (Ytiﬂ - Yiz)ﬂ

3
L
3

Il
o

=0
m—1
o Z [(Xt“rl - Xti>2 —2 (th‘+1 - th‘) (Y;fwl - Y;h) + (Ytiﬂ - Ytz)ﬂ
=0
m—1
=4 (th'+1 - Xti) (Y;fi-u - Ytz) :
=0

By passing to the limit ||IT|| — 0, we see that holds.

2. If X and Y are square-integrable martingales, then the cross variation of X and Y is
the unique process such that M, := X,;Y; — (X,Y),; is a martingale.

The cross variation of two It6 processes is given as follows.

Proposition 2.3 Let X; and Y; be Itd processes of the form

t t t t
Xt:X0+/u§ds+/a§st, Yt:YOJr/usYder/ o) dB,,
0 0 0 0

where pX, pY oX, o0f are adapted processes. Then,

¢
(X,Y)t—/ oXoY ds.
0

Proof. Note that

t

Xe+Yi=Xo+ Yo+ [ (ud +pl)ds+

Xi =Y, =Xo=Yo+ | (uf —pl) ds+

o)
I

S— S—

By Proposition [2.1, we have

t t
(X+Y) = / (cX + 03)2 ds and (X —Y); = / (cX — 05)2 ds.
0 0

12



Hence, using , we have

(X+Y) —(X-=-Y),
4

1

_ Z/Ot (0 +07)" = (o3 = o)) s

t

_ X_y

—/O‘SO'SdS.
0

In classical calculus, if we know the derivative of a function x; with respect to t, we can
also compute the derivative of the composite function f(x;) using chain rule. In stochastic
calculus, In stochastic calculus, [t6’s lemma serves as the analogue of the chain rule, providing
the formula for the Ito diffusion f(X;) for an It6 process X;.

<X7 Y>t =

]

Theorem 2.4 (Itd’s Lemma) Let f : [0,7] x R — R be a function of class C*?, i.e.,
(t,x) — f(t,z) is continuously differentiable in ¢, and twice continuously differentiable
in x. Let X be an [t6 process given by . Then, for any t € [0, 7],

t t t 1
f(t,Xt)_f(O,XO)—i—/o fi(s, X5) ds—l—/o fz(t,XS)dXs—l—/o ifm(t,Xs)aKX)s
= f(0,Xo) + /0 (ft(s,Xs) + ps fu(s, Xs) + %offm(s,Xs)) ds (17)

t
+/ psfo(s, Xs) dBs.
0

Equivalently, in differential form, we have
1
df(t, Xt) - ft<t7 Xt) dt —|— fQJ(t, Xt) dXt + Efgjw(t, Xt) d<X>t

= (ft(ta Xt) + Mtfw(tu Xt) + %O’?f$m(t, Xt>> dt + Htfa:(t7 Xt) dBt

Remark 2.5. In classical calculus, suppose that z : [0,7] — R is a differentiable function

satisfying % = 1;. By the chain rule, we have
df (t, x dr
f(dt t) — ft(t7 xt) + fm(t, xt)d—tt — ft(ty xt) _|_ fl‘(ty I‘t)/zl/t‘

The additional term % fua(t, X)d(X); in 1td’s lemma is due to the non-zero quadratic varia-
tion of Brownian motions.

13



Proof. A rigorous proof of Itd’s lemma will require techniques of localization and approxi-
mations. Hence, we only outline the main idea of the proof below.

Let I be a partition of [0, ¢]. Then, by Taylor expansion (or the mean value theorem),

m—1 m—1
f(t7Xt) - f(07X0) = Z ft(ﬁinm)(tiH - tl) + Z f:l:(tﬂth) (Xti+1 - th)
i=0 i=0
1 m—1
2
+ 5 fzx(tza §l> [XtHl - th} ) (18>
i=0
where for each i = 0,...,m — 1, n; and & are Fy,, -measurable, with n; € [t;,t;11], and

lying in between X;, and X;

41"

By passing to the limit ||II|| — 0, one has

m—1

S fil X)) (tisr — 1) 5 / fuls, X,) ds,
i=0 0

m—1

t
1
fx(tuth) (Xti+1 - th) L_> / fai(taXs) dXS
0

=0

— /t fu(s, Xs)ps ds + /t fz(s, Xs)os dBs. (19)
0 0

For the third summand, we consider

m—1 m—1
Z fmc(tu 51) I:Xti+1 - Xti]2 = Z fxx(tw th) |:Xti+1 - Xti:|2
=0 1=
m—1 )
+ Z (fxx(ti> Xti) - fa::c(t’ fl)) |:th‘+1 - th} : (20)
=0
By the continuity of f,.(¢,) and X, as ||II|| — 0, we have
s 2 L1
(fmf(ti’ Xti) - fl“x(t> 61)) [Xti+1 - Xti] — 0. (21)
=0

On the other hand, similar to the proof of Proposition , we let A, := f(f s ds and
M, = fg o0sdB,. We then decompose the first term of into

m—1
Z fxm(th Xti) [Xtiﬂ - Xti] i
=0

14



m—1 m—1

- fmy(tw th) [Ati+1 - At1j| 2 + 2 Z fzz (t’u th) |:Ati+1 - At1:| [Mti+1
1=0 1=0
m—1
+Zf1’(£ tlJXt H’l _MtZ]Q
1=0

Following the derivation of (13)-(15), one can show that, as ||II|| — 0,
m—1 )
Z fﬂﬁr(tiﬂ th> [At¢+1 - Atz] =0
i=0

2 Z fxz<ti7Xti) [Ati+1 - Atz] |:Mt7;+1 - Mtz:| — O?

m—1 L t
Z fx:p(tla th) [Mt¢+1 - Mti]Q L_> / fxm<37X5> (M
=0 0

0

Therefore, combining - yields

m—1 L t
S fualtis Xo) iy = X 5 [ fuals X0 ds
i=0 0

as |[II|| — 0.
Finally, the formula follows by combining , , and

3 Applications of It6’s Lemma

¢
= / fuz (s, XS)UE ds.

_ Mti]

(22)

(23)

(24)

This section presents a number of examples of using It6’s lemma. In particular, we will see
how Itd’s lemma can be used to show the martingale property and compute moments of an

It process.

Example 3.1 Using [t0’s lemma, show that

t
1
/ B,dB, = -B? — L
0 2 2

15



Solution. We let f(z) = z*. By It0’s lemma,
1 2 / 1 1
d §Bt = df (B:) = f'(By) dB; + §f (B1)d(B),

1
:BtdBt+§ X 1dt

1
= B,dB,; + §dt.

Integrating both sides from 0 to ¢, and using the fact that By = 0, we have

1 t "1 K t
—sz/ BSdBSJr/ —ds:/ BydB, + ~.
2 0 0 2 0 2

We thus obtain the identity be rearranging the above. O]

Remark 3.1. Let f be a differentiable function with f(0) = 0. By the change of variables
formula in classical integrations, we have

1

| s = 5.

Comparing this with Example , we see that there is an extra correction term —t/2 in
stochastic calculus.
3.1 Product Rule
Theorem 3.2 (Product Rule) Let X; and Y; be It6 processes of the form
dX; = pXdt +oXdW,,  dY, = dt + o} dW,,

where 1;¥, 1Y, 0%, oY are adapted processes satisfying the usual integrability conditions.

Then the product Z; := X,Y; is also an It6 process, and it satisfies

d(X:Y;) = Xp dY, + Y d X, + d(X, YY),

Proof. We use the identity

XY= ¢ (X4 Y — (X~ Y?)

Define A; := X; +Y; and B; := X; — Y;. Then both A; and B; are It6 processes. Applying
It0’s formula to A7 and B?, we obtain:
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Since A; = X; +Y;, we have dA; = dX; + dY;, and similarly dB; = dX; — dY;. Also, the
quadratic variation satisfies:

d(A) = d(X); +2d(X,Y); + d(Y ),
d(B); = d(X); —2d(X,Y ) + d(Y ).
Thus, taking the difference,
d(A? — B}) = 2A,dA; — 2B, dB; + (d{A), — d{(B),) .
But observe:
2A, dA; — 2B, dB; = 2(X, + Y))(dX, + dY;) — 2(X, — Y))(dX, — dY;) = 4(X,dY; + Y, dX,),

and
d(A); — d(B); = 4d(X,Y),.

Therefore,
d(A? — B?) = 4(X, dY; + Y;dX;) + 4d(X,Y);.

Dividing both sides by 4, we get:

A(X,Y;) = X, dY; + Y dX, + d(X,Y),.

3.2 Martingale Property

One useful application of 1t6’s lemma is to show the (sub/super)-martingale property of an
It6 process. Let X be an It6 process with the differential form

dXt = U dt + oy dBt

Suppose that the drift term vanishes, i.e., u. = 0. Then, X; = fg 0 dB, is essentially an Ito
integral, which is a martingale. Similarly, if X has a non-negative (resp. non-positive) drift
term, X will be a sub-martingale (resp. supermartingale).

Example 3.2 Let X be an [t6 process with the representation . Using [t6’s lemma,
show that

t
M, = Xf — / (QMSXS + af) ds
0

is a martingale.

17



Solution. Let My := f(X;), where f(x) = z?. By It6’s lemma,

dM, = (fa: (Xe)pe + Ut faca:(Xt)) dt + f.(X¢)op dBy
(Q,UtXt -+ Ut X 2) dt I QO—tXt dBt
= (2mX; +07) dt + 20,X, dB,.

Integrating both sides with respect to ¢, we obtain

t t t
M, —/ (25 X5+ 02) ds = X7 — / (2ps X, + 07) ds = X§ +2/ 0, X, dB,.
0 0 0

Since the LHS can be represented as an It6 integral, we conclude that the process is a
martingale.

]

Example 3.3 Suppose that the price of a risky asset {S;}:>0 is given by

t 1 t
S; = Spexp (/ (us - 50?) ds +/ O st) )
0 0

(a) Represent S as an Ito process. Is S a martingale in general?
(b) Let V; := e "S;. Represent V as an It6 process and show that V; is a martingale
if p.=r.

Solution.
(a) Let f(x):=e€", and

By It6’s lemma,
1
dS; = df (Xy) = fo(t, Xy) dX; + Efm(t’ X)d(X)

1 1
= St |:(/1't §O't) + 20't:| dt + Stgt dBt
= St,ut dt = Stat dBt

Since the drift term does not vanish unless . = 0, S is in general NOT a martingale.

18



(b) Let g(t,z) := e "z, so that V; = g(¢,S;). By applying Ito’s lemma to g(t,S;) (or
simply using product rule)

1
dVy = dg(t, Si) = g+(t, St) dt + g.(t, S¢) dS; + 59:5;1:@, S)d(S)+

= €_TtSt <—7’ + ,ut) dt + 6_”Stat dBt
= V;(/,Lt — T)dt i ‘/tO't dBt

If u. = r, the expression is reduced to
dV; = Vioy dBy.

In this case, V' becomes a martingale.

3.3 Distributions and Computations of Expected Values

Another important use of It6’s lemma is to compute expected values, especially moments,
of It6 processes. Let X be an [t6 process of the form . We can take expectation on both

sides to give
t t t
EX;] =E {/ usds} +E [/ O'SdBS:| :/ E [ps] ds.
0 0 0

We can express the above in terms of a differential equation, especially when the drift term

1 depends on X;:
d
SE{X) = Elu].
If the drift term depends on X, then E[X,] is computed by solving the above differential

equation.

To compute higher moments E[XT], p > 1, we can apply [to’s lemma to X7, followed by
deriving the differential equation satisfied by E[X?].

Example 3.4 Suppose that X is an Ornstein—Uhlenbeck (OU) process which sat-
isfies the following:
dX; =0(p— Xy)dt +odB;, Xo=r,

where 6, 0,7 > 0 and 4 € R. The OU process is also called the Vasicek model in
interest rate models.

(a) Compute E[X;].

(b) Compute Var[X;].

(c) Compute lim;,o, E[X;] and lim;_,o, Var[X;].

Solution.
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(a)

Taking expectation on both sides of the equation, we have
dE[X;] = 0(n — E[Xy])dt, E[Xo] =7,

Equivalently, if we let f(t) := E[X;], we arrive at following first-order differential
equation:

F(t) =0(n—ft), £(0)=r

To solve the differential equation, we apply the method of integrating factor: by
multiplying both sides with €%, we have

S F(0) = (1) + 07 (1)) = Oue”

Integrating both sides yields

P f(t) — PO F(0) = /t Ope® ds = pu (e —1).
0

Therefore,
E[X)] = f(t) = re™® + u(l — ™).

We need to compute E[X?]. To this end, by applying [t6’s lemma to X2, we have
1
dXP = 2X, dX, + 5(2)d(X),
= (20(uX; — X}) + 0°) dt + 20X, dB;

Taking expectation on both sides and let g(¢) := E[X?] yields
g'(t) = 20uf(t) — 209(t) + 0, g(0) =r.

Using the method of integrating factor,

d

2 ("g(1) = ™ (9/(t) +209(1)) = € (200 (1) +0?) .

Therefore, integrating both sides yields

e g(t) — e g(0) = /t e** (20uf (s) + 0?) ds
0
— /t e20s (200 ((r — p)e % + 1) + o] ds

0

t
= / [20p(r — p)e?s + (0% +2601°) 6298] ds
0
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Therefore,

(c) Using the formula of E[X;] and Var[X],

5 1 . —0t _
Ji B = Jim (= 10+ 4] =
2 2

: i & (1 20ty T
tlgglo\/'ar[Xt]—tligloze (1—e )—20.

]

(& J

We present some results that utilize It6’s lemma to characterize the distributions of pro-
cesses.

Proposition 3.3 Let f be a deterministic function satisfying fOT |f(t)]*dt < co. Then,
the Ito integral of f has the following distribution:

/OTf(t) B, ~ N (0, /OT |f(t)|2dt) |

Proof. For t € [0,T1], let X; := fot f(s)dB, and Y; := et where A\ € R. Applying 1to’s
lemma to Y; yields
2

4Y, = N dX, + 5V d(X),
2
= %F(tm dt + XY, f(t) dB;.
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Let My(t) := E[Y;] = E[e**], so that A — M, (t) is the mgf of X;. Using the equation for
Y;, we have

M () = S P OM1).

2
By multiplying the differential equation with the integrating factor e~ o 17(9) 4 we have

d ,ﬁtQSS 7ﬁtzss / )\2
% (e 5 f()f (s)d M}\(t)) —e 2 f()f (s)d <M)\<t) - ?f2(5)M/\(t)) IO

Hence,
M\(T) = €§ Jo £2) “NML(0) = e% Jo 12 dt.

since M,(0) = E[e**°] = E[e’] = 1. Note that > I PO g the mgf of the distribution
N0, fOT f2(t) dt). Therefore, the proof is complete. O

In the last chapter, we know that the quadratic variation of a Brownian motion is t. The
following result, proven by It6’s lemma, shows the converse.

Theorem 3.4 (Lévy’s Characterization) Let {X;};>o be an adapted process with
Xo = 0. Suppose that:

1. X is a martingale with continuous sample paths;

2. (X);=tforallt>0.
Then X is a standard Brownian motion.

Proof. Fix A € R, define the process Y; by Y, := e*t. By It&’s lemma and the fact that
(X) =t, we have

2 2

dY; = \Y, dX, + %Y; d(X), = \Y; dX; + %Yt dt.

Integrating both sides with respect to ¢, we have
t /\2 t
Yt:YOH/ stxs+5/ Y, ds.
0 0

Since X; is a martingale, the integral f(f Y, dX; is also a martingal Taking expectation on
both sides yields
)\2 t
EYi] =1+~ [ E[Y.]ds,
0

IThis can be shown by constructing a general stochastic integral using X as an integrator in place of the
Brownian motion. Alternatively, we can use the martingale representation theorem to represent X, as
an Ito6 integral. The details will be covered in the last chapter.
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which is a first-order integral equation. Applying the method of integrating factor, we have
that

A2t

E[eM] =E[Y] =€z . (25)
Therefore, X; ~ N(0,1).

This findings can be used to show that X has independent, stationary, and Gaussian
increment. To this end, fix A\, x € R and s > 0. For any ¢ > s, we define the process

7, = MXetu(Xi=Xo) _ y ou(Xe=Xo)
By treating s as fixed and applying Ité’s lemma to Z; with respect to t, and using the
quadratic variation of X, we have
12
dZt = /LZt dXt + 7Zt dt.
Integrating both sides with from s to ¢, followed by taking expectations, we have
2 2

E[Z] = E[Z] +E [u /: qu] + % /:E[Zu] du = E[Y}] + % /:]E[Zu] du.

Solving this integral equations yields

2 2 2
po(t—s) Y po(t—s)
2 = eTS+ 2 ,

E[e/\XsﬂL(Xt—Xs)] = E[Z] = E[YJ]e

where the last equality follows from (25). Since the joint mgf of (X, X; — X) into the
product of the marginals, and both are Gaussian, this proves that (X, X; — X;) follows a
multivariate normal distribution with covariance matrix

s 0
0 t—s)°
Therefore, X has independent, stationary, and Gaussian increments as desired. O

4  Multivariate Stochastic Calculus

It6’s lemma can be generalized into the following multi-dimensional version, which can be
proven using a similar argument as the one-dimensional Itd’s lemma by considering the
Taylor series expansion of a multivariate function.
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Theorem 4.1 (Multivariate It6’s Lemma) Let B, = (Bf)?zl be a d-dimensional
standard Brownian motion, and X; = (X})"_, be an n-dimensional It6 process with the
expression

d
dX] = pidt+> op? dB].
j=1

Then, for any f : [0,00) x R® — R that is of C*? (i.e., continuously differentiable in the
t-variable, and twice continuously differentiable in the z-variable),

n n g af n 7
df(t,th,...,Xt):ft(t,th,...,Xt)dt+z6$‘(t,Xt1,...,Xt)d(X)t
i=1 v
- — (XL XM d(XE X
+2;;axiamk(7 t ) t)< ) >t
_ 1 n . ’Laf 1 n
- ft(thtv JXt)—i_Z:utax'(taXta'”?Xt)
i=1 t
ISy P ¢
ny 4J _k.j
+§Zzzax28xk(t’Xt’ XMoo | dt
=1 k=1 j=1
+;;agﬂa l(t,th,...,Xt")ng.

The product rule presented in Proposition Theorem [3.2] can be proven by applying the
multivariate [t6’s lemma to f(z,y) = zy. We also have the following generalization of Lévy’s
characterization theorem (Theorem [3.4).

Theorem 4.2 (Multi-dimensional Lévy’s Characterization) Let X =
(X}, ..., X™") >0 be an R"-valued adapted process with X, = 0. Suppose that:
1. Each component X is a martingale with continuous sample paths;

2. For all 7,57 =1,...,n, the cross-variation satisfies
XX =t = 0 TTET > 0
) = 0450 = o . or a = U5

‘ ! 0, ifi#j

Then X is a standard n-dimensional Brownian motion.

Proof. Fix Ai,..., A\, € R and define the process Y; := f(t, X},..., X), where

f(t,xq, ..., x,) :=exp (Z )\ixi> )
i=1
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By the multivariate [t6’s lemma, we have

dYy =

of d o
X,)dX] + X,) d(X, X7
o, o, X d Zzaxax] (8, Xe) d{X, X7)e

=1 =1 j=

- Z Ai exp <Z )\ka> dX; + = Z Z A\ exp (Z /\ka) (X7, X7),

7,1]1

_Yt(z/\ dX} + = Zz/\)\ d(X', X7) )

i=1 j=1
=Y, (zAidXZ+§Zl)\§dt>,

where the last line follows from the fact that (X*, X7), = t.

By integrating the equation for Y; from 0 to ¢, and then taking expectations and using
the fact that the stochastic integrals have zero expectation, we have

I~ [
E[Y}] —1+§;/\i/0 E[Y;] ds
Solving this integral equation yields
exp(Z)\Xz) E[Y] —exp( ZA2>

which shows that X; ~ N(0,¢I,,). The independent, stationary, and Gaussian increment can
then be shown by utilizing this finding and following the proof of Theorem

[]
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