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This chapter introduces Itô integrals, one of the fundamental concepts in stochastic calculus.
We begin with the L2 construction of Itô integrals with Brownian motion as the integrator,
followed by a discussion of their key properties and computational rules. A crucial distinction
from classical calculus lies in the finite, non-vanishing quadratic variation of Brownian mo-
tion, which gives rise to an additional term in Itô’s lemma – the chain rule of Itô’s calculus.
We conclude with illustrative examples demonstrating applications of Itô’s lemma.

Key topics in this chapter:
1. Constructions of Itô integrals;

2. Diffusion processes and distributions;

3. Itô’s lemma;

4. Applications of Itô’s lemma.

1 Constructions of Itô Integrals
The most fundamental application of ordinary calculus is to describe rates of change in model-
ing real-world phenomena, for example, population growth, motions, or chemical reactions.
However, ordinary calculus falls short when modeling systems influenced by randomness,
such as financial markets. This motivates the use of stochastic calculus, which extends the
tools of calculus to accommodate randomness.

Stochastic calculus originated in the mid-20th century, primarily developed by Kiyoshi
Itô, who introduced Itô integral and Itô’s lemma in the 1940s. Let X ∈ L2(Ω,F , {Ft}t≥0,P)
be a square-integrable process and B be a standard (one-dimensional) Brownian motion. We
want to define the Itô integral (more generally, a stochastic integral) of the form

IT (X) :=

∫ T

0

Xt dBt. (1)
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One tempting approach is defined it in a pathwise sense, i.e., by setting

IT (X)(ω) =

∫ T

0

Xt(ω) dBt(ω), ω ∈ Ω.

However, as we have learnt in the last chapter, Bt is nowhere differentiable a.s., meaning
that dBt(ω), and thus the above pathwise integral being ill-defined. Therefore, this section
is devoted to giving a proper definition of (1) , specifically in the L2-sense.

The procedures of constructing Itô integrals largely resemble the construction of Lebesgue
integrals. Herein, we follow a 3-step approach for the classes of adapted processes X listed
below:

1. X is a simple process;

2. X is a bounded process;

3. X is a square-integrable, adapted process.

1.1 Simple Processes

Fix T > 0. We first construct Itô integrals for simple processes.

Definition 1.1 (Simple processes) An adapted process {Xt}t∈[0,T ] in the probability
space (Ω,F , {Ft}t∈[0,T ],P) is said to be a simple process if it is piecewise constant on
[0, T ]. To be exact, there exists a partition Π = {t0, . . . , tm} of [0, T ] with t0 = 0, tm = T
such that

Xt = ξ01{0}(t) +
m−1∑
k=0

ξk1(tk,tk+1](t), (2)

where ξk is Ftk-measurable, and supk=0,...,m−1 |ξk| ≤ C a.s. for some finite constant C > 0

Remark 1.1. A simple process is essentially predictable, i.e., the value of the process at time
t is known immediately before that time. A predictable process is also adapted, but the
converse is not true in general. From (2), the value Xtk+δ is known at tk for any sufficiently
small δ > 0. The theory of Itô calculus presented below is thus built on predictable processes.
Nevertheless, an adapted process with continuous sample paths (i.e., no jump) is predictable.
Since we will mostly consider continuous processes in our course, we shall not distinguish
the two notions in the rest of the discussions.

The Itô integral for a simple process is defined as follows.
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Definition 1.2 (Itô integral of a simple process) Let X be a simple process with
the representation (2). For t ∈ [0, T ], the Itô integral of X is defined as

It(X) =

∫ t

0

Xs dBs :=
m−1∑
k=0

ξk
(
Btk+1∧t −Btk∧t

)
. (3)

Equivalently, if n is the index such that tn < t ≤ tn+1, then∫ t

0

Xs dBs =
m−1∑
k=0

ξk
(
Btk+1∧t −Btk

)
=

n−1∑
k=0

ξk
(
Btk+1

−Btk

)
+ ξn

(
Bt −Btn

)
.

By definition, it is clear that the process {It(X)}t∈[0,T ] is {Ft}t∈[0,T ]-adapted. The follow-
ing presents the major properties of Itô integrals.

Theorem 1.2 Let X be a simple process and t ∈ [0, T ]. We have the following properties
concerning the Itô integral It(X):

1. (Adaptability) {It(X)}t∈[0,T ] is {Ft}t∈[0,T ]-adapted;
2. (Continuity) the sample paths t 7→ It(X) is continuous a.s.;
3. (Linearity) for any simple process Y and α, β ∈ R,

It(αX + βY ) = αIt(X) + βIt(Y );

4. (Martingale) {It(X)}t∈[0,T ] is a square-integrable martingale with respect to
{Ft}t∈[0,T ], in particular, E[It(X)] = 0 for all t ∈ [0, T ];

5. (Itô’s isometry)

E[I2t (X)] = E
[∫ t

0

X2
s ds

]
;

6. (Quadratic variation)

⟨I(X)⟩t =
∫ t

0

X2
s ds.

Proof. The adaptability is clear from the definition (3). The continuity of the sample paths
follows from the continuity of t 7→ Btk+1∧t − Btk∧t and (3), thanks to the continuity of the
sample paths of Brownian motions.

We prove the remaining properties below.

3. Let Π1 = {t0, . . . , tm} and Π2 = {s0, . . . , sn} be two partitions of [0, T ] such that

Xt = ξ01{0}(t) +
m−1∑
k=0

ξk1(tk,tk+1](t) and Yt = ζ01{0}(t) +
n−1∑
k=0

ζk1(sk,sk+1](t).
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Then, we can define a finer and common partition Π := Π1 ∪ Π2 = {r0, . . . , rl}, where
l ≤ m+ n. Then, X and Y can be rewritten in terms of Π as

Xt =
ℓ−1∑
k=0

Xrk 1(rk,rk+1](t), Yt =
ℓ−1∑
k=0

Yrk 1(rk,rk+1](t).

Let α, β ∈ R. By definition of the Itô integral for simple processes,

It(αX + βY ) =
ℓ−1∑
k=0

(αXrk + βYrk)
(
Brk+1∧t −Brk∧t

)
.

Distributing the sum, we obtain

It(αX + βY ) = α

ℓ−1∑
k=0

Xrk

(
Brk+1∧t −Brk∧t

)
+ β

ℓ−1∑
k=0

Yrk

(
Brk+1∧t −Brk∧t

)
= αIt(X) + βIt(Y ).

4. By the first property, the process {It(X)}t∈[0,T ] is adapted. The integrability is also
clear: for any t ∈ [0, T ], using the fact that |ξk| ≤ C a.s. and (8) below, we have

E[|It(X)|2] =
n−1∑
k=0

E[ξ2k](tk+1− tk)+E[ξ2n](t− tn) ≤ C2

n−1∑
k=0

(tk+1− tk)+C2(t− tn) = C2t,

where n is the integer such that tn < t ≤ tn+1.

Finally, we verify the martingale condition. For any s, t ∈ [0, T ] with s ≤ t, let l ≤ n
be the unique integers such that tl < s ≤ tl+1 and tn < t ≤ tn+1. If n < l,

E [It(X)|Fs] = E

[
n−1∑
k=0

ξk
(
Btk+1

−Btk

)
+ ξn(Bt −Btn)

∣∣Fs

]

= E

[
l−1∑
k=0

ξk
(
Btk+1

−Btk

)
+ ξl (Bs −Btl)

∣∣Fs

]

+ E

[
ξl(Btl+1

−Bs) +
n−1∑

k=l+1

ξk(Btk+1
−Btk) + ξn(Bt −Btn)

∣∣Fs

]
,

For any k ≤ l− 1, tk ≤ tk+1 < s ≤ t, so that ξk(Btk+1
−Btk) is Fs-measurable. Hence,

E

[
l−1∑
k=0

ξk
(
Btk+1

−Btk

)
+ ξl(Bs −Btl)

∣∣Fs

]
=

l−1∑
k=0

ξk
(
Btk+1

−Btk

)
+ ξl(Bs −Btl)
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= Is(X).

Next, for k > l, s ≤ tk, so that Fs ⊆ Ftk Hence, by the tower property of conditional
expectations,

E

[
ξl(Btl+1

−Bs) +
n−1∑

k=l+1

ξk(Btk+1
−Btk) + ξn(Bt −Btn)

∣∣Fs

]

= ξlE
[
Btl+1

−Bs|Fs

]
+

m−1∑
k=l+1

E
[
ξk(Btk+1

−Btk)
∣∣Fs

]
+ E [ξn(Bt −Btn)|Fs]

=
n−1∑

k=l+1

E
[
E
[
ξk(Btk+1

−Btk)|Ftk

] ∣∣Fs

]
+ E [E [ξn(Bt −Btn)|Ftn ] |Fs]

=
n−1∑

k=l+1

E
[
ξkE

[
(Btk+1

−Btk)|Ftk

] ∣∣Fs

]
+ E [ξnE[Bt −Btn|Ftn ]|Fs]

= 0,

since Btk+1
−Btk |Ftk = Btk+1

−Btk ∼ N (0, tk+1 − tk).

Combining the above, we arrive at E[It(X)|Fs] = Is(X) whenever l < n. If l = n, then

It(X)− Is(X) = ξn(Bt −Btn)− ξn(Bs −Btn) = ξn(Bt −Bs).

Hence,
E[It(X)|Fs] = Is(X) + E[ξn(Bt −Bs)|Fs] = Is(X),

and we arrive at the same conclusion.

In particular, a martingale has constant expectations, so that E[It(X)] = E[I0(X)] = 0
for any t ≥ 0.

5. Let n be the unique integer such that tn < t ≤ tn+1. Consider the LHS of the formula:

E[I2t (X)]

= E

(n−1∑
k=0

ξk
(
Btk+1

−Btk

)
+ ξn(Bt −Btn)

)2


= E

(n−1∑
k=0

ξk
(
Btk+1

−Btk

))2


︸ ︷︷ ︸
I1

+2
n−1∑
k=0

E
[
ξnξk(Bt −Btn)

(
Btk+1

−Btk

)]
︸ ︷︷ ︸

I2

+ E
[
ξ2n(Bt −Btn)

2
]︸ ︷︷ ︸

I3

. (4)

5



Using the tower property, the last term of (4) is given by

I3 = E
[
ξ2n(Bt −Btn)

2
]
= E

[
ξ2nE

[
(Bt −Btn)

2|Ftn

]]
= E[ξ2n](t− tn). (5)

For the second term of (4), we again apply the tower property to obtain

I2 = 2
n−1∑
k=0

E
[
ξnξk(Bt −Btn)

(
Btk+1

−Btk

)]
= 2

n−1∑
k=0

E
[
E
[
ξnξk(Bt −Btn)

(
Btk+1

−Btk

) ∣∣Ftn

]]
= 2

n−1∑
k=0

E
[
ξnξk

(
Btk+1

−Btk

)
E
[
Bt −Btn

∣∣Ftn

]]
= 0. (6)

For the first term of (4), we expand the expression and obtain

I1 = E

(n−1∑
k=0

ξk
(
Btk+1

−Btk

)
+ ξn(Bt −Btn)

)2


= E

[
n−1∑
k=0

ξ2k
(
Btk+1

−Btk

)2]
+ 2

n−1∑
k<j

E
[
ξkξj

(
Btk+1

−Btk

) (
Btj+1

−Btj

)]
.

Following the derivation of (5) by conditioning each summand with respect to Ftk

(exercise), it is easy to see that

E

[
n−1∑
k=0

ξ2k
(
Btk+1

−Btk

)2]
=

n−1∑
k=0

E[ξ2k](tk+1 − tk).

Likewise, following the derivation of (6) by conditioning each summand with respect
to Ftj (exercise), we have

2
n−1∑
k<j

E
[
ξkξj

(
Btk+1

−Btk

) (
Btj+1

−Btj

)]
= 0.

Hence,

I1 =
n−1∑
k=0

E[ξ2k](tk+1 − tk). (7)

Combining (5), (6), and (7), we obtain

E[I2t (X)] =
n−1∑
k=0

E[ξ2k](tk+1 − tk) + E[ξ2n](t− tn). (8)
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Next, we consider the right-hand side of the isometry. Using (2), we have∫ t

0

X2
s ds =

∫ t

0

(
ξ01{0}(s) +

m−1∑
k=0

ξk1(tk,tk+1](s)

)2

ds

=

∫ t

0

(
ξ201{0}(s) +

m−1∑
k=0

ξ2k1(tk,tk+1](s)

)
ds

=
m−1∑
k=0

ξ2k

∫ t

0

1(tk,tk+1](s) ds

=
n−1∑
k=0

ξ2k(tk+1 − tk) + ξ2n(t− tn).

Therefore,

E
[∫ t

0

X2
s ds

]
= E

[
n−1∑
k=0

ξ2k(tk+1 − tk) + ξ2n(t− tn)

]
= E[I2t (X)].

6. Since {It(X)}t∈[0,T ] is a square-integrable martingale, {I2t (X)}t∈[0,T ] is a sub-martingale.

We show that for any 0 ≤ s ≤ t ≤ T ,

E
[
(It(X)− Is(X))2|Fs

]
= E

[∫ t

s

X2
u du|Fs

]
. (9)

If this is true, by the martingale property of Itô integrals, we would have

E
[
It(X)2 −

∫ t

0

X2
u du|Fs

]
= 2E[It(X)Is(X)|Fs]− I2s (X)−

∫ s

0

X2
u du

= 2I2s (X)− I2s (X)−
∫ s

0

X2
u du

= I2s (X)−
∫ s

0

X2
u du,

showing that It(X)2 −
∫ t

0
X2

u du is a martingale. By the definition of quadratic variations,
we deduce that

⟨I(X)⟩t =
∫ t

0

X2
s ds.

To prove (9), let l ≤ n be the unique integers such that tl < s ≤ tl+1 and tn < t ≤ tn+1.
Then,

E[(It(X)− Is(X))2|Fs] = E

( n−1∑
k=l+1

ξk(Btk+1
−Btk) + ξn(Bt −Btn)

)2

|Fs


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The rest of the proof is parallel to the proof of Itô’s isometry: we expand the square above
as in (4), and compute each of the three resulting terms. The only difference is that the
index starts at l + 1 instead of 0 in this case. We thus omit the proof.

1.2 Bounded Processes

X is a bounded process if there exists a constant 0 < C < ∞ such that

sup
t∈[0,T ]

|Xt| ≤ C a.s.

A bounded process can be approximated by simple processes in the L2-sense:

Theorem 1.3 Let X be a bounded adapted process. Then, there exists a sequence of
simple processes {X(n)}∞n=1 such that

lim
n→∞

E
[∫ T

0

∣∣∣Xt −X
(n)
t

∣∣∣2 dt

]
= 0. (10)

Using this approximation, we define Itô integrals for bounded adapted processes as fol-
lows.

Definition 1.3 (Itô integrals for bounded processes) Let X be a bounded adapted
process, and {X(n)}∞n=1 be a sequence of simple processes that satisfy (10). Then, the Itô
integral for X, {It(X)}t∈[0,T ], is the unique adapted and continuous process that satisfies

lim
n→∞

E
[∫ T

0

(
It(X)− It(X

(n))
)2

dt

]
= 0.

Remark 1.4. By Itô’s isometry, the sequence {I(X(n))} is a Cauchy sequence in the L2-sense.
Hence, the limit exists uniquely in L2, and is independent of the choice of the approximating
sequence.

The properties in Theorem 1.2 remain valid.

Theorem 1.5 The properties of Itô’s integrals in Theorem 1.2 also hold if X is a
bounded, adapted process.

1.3 Square-Integrable Processes

X is a square-integrable process if there exists a constant 0 < C < ∞ such that

E
[∫ T

0

X2
t dt

]
≤ C, t ∈ [0, T ].
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A square-integrable process can be approximated by bounded processes (and in turn, by
simple processes) in the L2-sense:

Theorem 1.6 Let X be a square-integrable, adapted process. Then, there exists a
sequence of bounded adapted processes {X(n)}∞n=1 such that

lim
n→∞

E
[∫ T

0

∣∣∣Xt −X
(n)
t

∣∣∣2 dt

]
= 0. (11)

Using this approximation, we define Itô integrals for square-integrable, adapted processes
as follows.

Definition 1.4 (Itô integrals for square-integrable processes) Let X be a square-
integrable, adapted process, and {X(n)}∞n=1 be a sequence of bounded processes that
satisfy (11). Then, the Itô integral for X, {It(X)}t∈[0,T ], is the unique adapted and
continuous process that satisfies

lim
n→∞

E
[∫ T

0

(
It(X)− It(X

(n))
)2

dt

]
= 0.

The properties in Theorem 1.2 remain valid.

Theorem 1.7 The properties of Itô integrals in Theorem 1.2 also hold if X is a square-
integrable, adapted process.

2 Itô’s Lemma
One of the most important formula in stochastic calculus is Itô’s lemma, which is the chain
rule for Itô process. An Itô process is defined as follows:

Definition 2.1 (Itô Process) A continuous adapted process X = {Xt}t∈[0,T ] on a
filtered probability space (Ω,F , {Ft}t∈[0,T ],P) is called an Itô process if it can be written
in the form

Xt = X0 +

∫ t

0

µs ds+

∫ t

0

σs dBs, (12)

where X0 is an F0-measurable random variable, µ = {µt}t∈[0,T ] and σ = {σt}t∈[0,T ] are
adapted processesa that satisfy

E
[∫ T

0

(|µs|+ |σs|2) ds
]
< ∞.

aMore precisely, µ and σ need to be predictable.
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A common and useful convention is to express an Itô process in differential form as

dXt = µt dt+ σt dBt.

In this notation, µt dt is called the drift term, and σt dBt is called the diffusion or volatility
term. In general, X is a martingale only if the drift term is zero: for any 0 ≤ s ≤ t,

E[Xt|Fs] = X0 +

∫ s

0

µu du+

∫ s

0

σu dBu + E
[∫ t

s

µu du+

∫ t

s

σ dBu

∣∣Fs

]
= Xs + E

[∫ t

s

µu du
∣∣Fs

]
̸= Xs.

In particular, if µt ≥ 0 (resp. µs ≤ 0) for all t ∈ [0, T ], then X is a sub-martingale (resp. su-
permartingale).

Proposition 2.1 The quadratic variation of the Itô process X in (12) is given by

⟨X⟩t =
∫ t

0

σ2
s ds.

Proof. Let

At :=

∫ t

0

µs ds and Mt :=

∫ t

0

σs dBs,

so that Xt = X0 + At +Mt. Note that both A and M are continuous process, and M is a
martingale with quadratic variation given by

⟨M⟩t =
∫ t

0

σ2
s ds;

see Property 6 of Theorem 1.2. Hence, it suffices to prove that ⟨X⟩t = ⟨M⟩t.

For any partition Π = {t0, . . . , tm} of [0, t], we have

V
(2)
t (Π) =

m−1∑
i=0

[
Xti+1

−Xti

]2
=

m−1∑
i=0

[
(Ati+1

+Mti+1
)− (Ati +Mti)

]2
=

m−1∑
i=0

[
Ati+1

− Ati

]2
︸ ︷︷ ︸

I1

+2
m−1∑
i=0

[
Ati+1

− Ati

] [
Mti+1

−Mti

]
︸ ︷︷ ︸

I2

+
m−1∑
i=0

[
Mti+1

−Mti

]2
︸ ︷︷ ︸

I3

.
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Using the continuity of the process A, we have

I1 =
m−1∑
i=0

[
Ati+1

− Ati

]2 ≤ max
j=0,...,m−1

∣∣Atj+1
− Atj

∣∣m−1∑
i=0

∣∣Ati+1
− Ati

∣∣
= max

j=0,...,m−1

∣∣Atj+1
− Atj

∣∣m−1∑
i=0

∣∣∣∣∫ ti+1

ti

µs ds

∣∣∣∣
= max

j=0,...,m−1

∣∣Atj+1
− Atj

∣∣ ∫ t

0

|µs| ds → 0 (13)

a.s. and in L1 when ∥Π∥ → 0, since lim∥Π∥→0maxj=0,...,m−1

∣∣Atj+1
− Atj

∣∣ = 0. Likewise, by
the continuity of M ,

I2 = 2
m−1∑
i=0

[
Ati+1

− Ati

] [
Mti+1

−Mti

]
≤ 2 max

j=0,...,m−1

∣∣Mtj+1
−Mtj

∣∣m−1∑
i=0

∣∣Ati+1
− Ati

∣∣
≤ max

j=0,...,m−1

∣∣Mtj+1
−Mtj

∣∣ ∫ t

0

|µs| ds
L1

→ 0 (14)

as ∥Π∥ → 0. Finally, by the definition of quadratic variations, we have the following conver-
gence in probability and in L1:

lim
∥Π∥→0

I3 = lim
∥Π∥→0

m−1∑
i=0

[
Mti+1

−Mti

]2
= ⟨M⟩t. (15)

Therefore, combining (13)-(15) yields

⟨X⟩t = lim
∥Π∥→0

V
(2)
t (Π) = lim

∥Π∥→0
(I1 + I2 + I3) = ⟨M⟩t.

Definition 2.2 (Cross Variations) Let X and Y be two adapted processes. Let t > 0
and Π = {t0, . . . , tm} be a partition of [0, t]. Define

Vt(Π) :=
m−1∑
i=0

(
Xti+1

−Xti

) (
Yti+1

− Yti

)
.

Then, the cross variation of X and Y , denoted by ⟨X, Y ⟩, is defined as

⟨X, Y ⟩t = lim
∥Π∥→0

Vt(Π).

Alternatively, the cross variation can also be written as

⟨X, Y ⟩t =
⟨X + Y ⟩t − ⟨X − Y ⟩t

4
. (16)
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Remark 2.2.

1. To see that the cross variation can be written as (16), note that

m−1∑
i=0

[(
Xti+1

+ Yti+1

)
− (Xti + Yti)

]2
+

m−1∑
i=0

[(
Xti+1

− Yti+1

)
− (Xti − Yti)

]2
=

m−1∑
i=0

[(
Xti+1

−Xti

)2
+ 2

(
Xti+1

−Xti

) (
Yti+1

− Yti

)
+
(
Yti+1

− Yti

)2]
−

m−1∑
i=0

[(
Xti+1

−Xti

)2 − 2
(
Xti+1

−Xti

) (
Yti+1

− Yti

)
+
(
Yti+1

− Yti

)2]
= 4

m−1∑
i=0

(
Xti+1

−Xti

) (
Yti+1

− Yti

)
.

By passing to the limit ∥Π∥ → 0, we see that (16) holds.

2. If X and Y are square-integrable martingales, then the cross variation of X and Y is
the unique process such that Mt := XtYt − ⟨X, Y ⟩t is a martingale.

The cross variation of two Itô processes is given as follows.

Proposition 2.3 Let Xt and Yt be Itô processes of the form

Xt = X0 +

∫ t

0

µX
s ds+

∫ t

0

σX
s dBs, Yt = Y0 +

∫ t

0

µY
s ds+

∫ t

0

σY
s dBs,

where µX
t , µ

Y
t , σ

X
t , σY

t are adapted processes. Then,

⟨X, Y ⟩t =
∫ t

0

σX
s σY

s ds.

Proof. Note that

Xt + Yt = X0 + Y0 +

∫ t

0

(
µX
s + µY

s

)
ds+

∫ t

0

(
σX
s + σY

s

)
dBs,

Xt − Yt = X0 − Y0 +

∫ t

0

(
µX
s − µY

s

)
ds+

∫ t

0

(
σX
s − σY

s

)
dBs.

By Proposition 2.1, we have

⟨X + Y ⟩t =
∫ t

0

(
σX
s + σY

s

)2
ds and ⟨X − Y ⟩t =

∫ t

0

(
σX
s − σY

s

)2
ds.

12



Hence, using (16), we have

⟨X, Y ⟩t =
⟨X + Y ⟩t − ⟨X − Y ⟩t

4

=
1

4

∫ t

0

[(
σX
s + σY

s

)2 − (σX
s − σY

s

)2]
ds

=

∫ t

0

σX
s σY

s ds.

In classical calculus, if we know the derivative of a function xt with respect to t, we can
also compute the derivative of the composite function f(xt) using chain rule. In stochastic
calculus, In stochastic calculus, Itô’s lemma serves as the analogue of the chain rule, providing
the formula for the Itô diffusion f(Xt) for an Itô process Xt.

Theorem 2.4 (Itô’s Lemma) Let f : [0, T ] × R → R be a function of class C1,2, i.e.,
(t, x) 7→ f(t, x) is continuously differentiable in t, and twice continuously differentiable
in x. Let X be an Itô process given by (12). Then, for any t ∈ [0, T ],

f(t,Xt) = f(0, X0) +

∫ t

0

ft(s,Xs) ds+

∫ t

0

fx(t,Xs) dXs +

∫ t

0

1

2
fxx(t,Xs) d⟨X⟩s

= f(0, X0) +

∫ t

0

(
ft(s,Xs) + µsfx(s,Xs) +

1

2
σ2
sfxx(s,Xs)

)
ds

+

∫ t

0

µsfx(s,Xs) dBs.

(17)

Equivalently, in differential form, we have

df(t,Xt) = ft(t,Xt) dt+ fx(t,Xt) dXt +
1

2
fxx(t,Xt) d⟨X⟩t

=

(
ft(t,Xt) + µtfx(t,Xt) +

1

2
σ2
t fxx(t,Xt)

)
dt+ µtfx(t,Xt) dBt.

Remark 2.5. In classical calculus, suppose that x : [0, T ] → R is a differentiable function
satisfying dxt

dt
= µt. By the chain rule, we have

df(t, xt)

dt
= ft(t, xt) + fx(t, xt)

dxt

dt
= ft(t, xt) + fx(t, xt)µt.

The additional term 1
2
fxx(t,Xt)d⟨X⟩t in Itô’s lemma is due to the non-zero quadratic varia-

tion of Brownian motions.

13



Proof. A rigorous proof of Itô’s lemma will require techniques of localization and approxi-
mations. Hence, we only outline the main idea of the proof below.

Let Π be a partition of [0, t]. Then, by Taylor expansion (or the mean value theorem),

f(t,Xt)− f(0, X0) =
m−1∑
i=0

ft(ηi, Xηi)(ti+1 − ti) +
m−1∑
i=0

fx(ti, Xti)
(
Xti+1

−Xti

)
+

1

2

m−1∑
i=0

fxx(ti, ξi)
[
Xti+1

−Xti

]2
, (18)

where for each i = 0, . . . ,m − 1, ηi and ξi are Fti+1
-measurable, with ηi ∈ [ti, ti+1], and ξi

lying in between Xti and Xti+1
.

By passing to the limit ∥Π∥ → 0, one has

m−1∑
i=0

ft(ηi, Xηi)(ti+1 − ti)
L1

→
∫ t

0

ft(s,Xs) ds,

m−1∑
i=0

fx(ti, Xti)
(
Xti+1

−Xti

) L1

→
∫ t

0

fx(t,Xs) dXs

=

∫ t

0

fx(s,Xs)µs ds+

∫ t

0

fx(s,Xs)σs dBs. (19)

For the third summand, we consider

m−1∑
i=0

fxx(ti, ξi)
[
Xti+1

−Xti

]2
=

m−1∑
i=0

fxx(ti, Xti)
[
Xti+1

−Xti

]2
+

m−1∑
i=0

(fxx(ti, Xti)− fxx(t, ξi))
[
Xti+1

−Xti

]2
. (20)

By the continuity of fxx(t, ·) and X, as ∥Π∥ → 0, we have

m−1∑
i=0

(fxx(ti, Xti)− fxx(t, ξi))
[
Xti+1

−Xti

]2 L1

→ 0. (21)

On the other hand, similar to the proof of Proposition 2.1, we let At :=
∫ t

0
µs ds and

Mt :=
∫ t

0
σs dBs. We then decompose the first term of (20) into

m−1∑
i=0

fxx(ti, Xti)
[
Xti+1

−Xti

]2
14



=
m−1∑
i=0

fxx(ti, Xti)
[
Ati+1

− Ati

]2
+ 2

m−1∑
i=0

fxx(ti, Xti)
[
Ati+1

− Ati

] [
Mti+1

−Mti

]
+

m−1∑
i=0

fxx(ti, Xti)
[
Mti+1

−Mti

]2 (22)

Following the derivation of (13)-(15), one can show that, as ∥Π∥ → 0,

m−1∑
i=0

fxx(ti, Xti)
[
Ati+1

− Ati

]2 L1

→ 0

2
m−1∑
i=0

fxx(ti, Xti)
[
Ati+1

− Ati

] [
Mti+1

−Mti

] L1

→ 0,

m−1∑
i=0

fxx(ti, Xti)
[
Mti+1

−Mti

]2 L1

→
∫ t

0

fxx(s,Xs) d⟨M⟩s

=

∫ t

0

fxx(s,Xs)σ
2
s ds. (23)

Therefore, combining (20)-(22) yields

m−1∑
i=0

fxx(ti, Xti)
[
Xti+1

−Xti

]2 L1

→
∫ t

0

fxx(s,Xs)σ
2
s ds. (24)

as ∥Π∥ → 0.

Finally, the formula follows by combining (18), (19), and (24)

3 Applications of Itô’s Lemma
This section presents a number of examples of using Itô’s lemma. In particular, we will see
how Itô’s lemma can be used to show the martingale property and compute moments of an
Itô process.

Example 3.1 Using Itô’s lemma, show that∫ t

0

Bs dBs =
1

2
B2

t −
t

2
.
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Solution. We let f(x) = 1
2
x2. By Itô’s lemma,

d

(
1

2
B2

t

)
= df(Bt) = f ′(Bt) dBt +

1

2
f ′′(Bt)d⟨B⟩t

= Bt dBt +
1

2
× 1 dt

= Bt dBt +
1

2
dt.

Integrating both sides from 0 to t, and using the fact that B0 = 0, we have

1

2
B2

t =

∫ t

0

Bs dBs +

∫ t

0

1

2
ds =

∫ t

0

Bs dBs +
t

2
.

We thus obtain the identity be rearranging the above.

Remark 3.1. Let f be a differentiable function with f(0) = 0. By the change of variables
formula in classical integrations, we have∫ t

0

f(s) df(s) =
1

2
f 2(t).

Comparing this with Example 3.1, we see that there is an extra correction term −t/2 in
stochastic calculus.

3.1 Product Rule

Theorem 3.2 (Product Rule) Let Xt and Yt be Itô processes of the form

dXt = µX
t dt+ σX

t dWt, dYt = µY
t dt+ σY

t dWt,

where µX
t , µ

Y
t , σ

X
t , σY

t are adapted processes satisfying the usual integrability conditions.
Then the product Zt := XtYt is also an Itô process, and it satisfies

d(XtYt) = Xt dYt + Yt dXt + d⟨X, Y ⟩t.

Proof. We use the identity

XtYt =
1

4

(
(Xt + Yt)

2 − (Xt − Yt)
2
)
.

Define At := Xt + Yt and Bt := Xt − Yt. Then both At and Bt are Itô processes. Applying
Itô’s formula to A2

t and B2
t , we obtain:

dA2
t = 2At dAt + d⟨A⟩t, dB2

t = 2Bt dBt + d⟨B⟩t.
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Since At = Xt + Yt, we have dAt = dXt + dYt, and similarly dBt = dXt − dYt. Also, the
quadratic variation satisfies:

d⟨A⟩t = d⟨X⟩t + 2 d⟨X, Y ⟩t + d⟨Y ⟩t,

d⟨B⟩t = d⟨X⟩t − 2 d⟨X, Y ⟩t + d⟨Y ⟩t.

Thus, taking the difference,

d(A2
t −B2

t ) = 2At dAt − 2Bt dBt + (d⟨A⟩t − d⟨B⟩t) .

But observe:

2At dAt − 2Bt dBt = 2(Xt + Yt)(dXt + dYt)− 2(Xt − Yt)(dXt − dYt) = 4(Xt dYt + Yt dXt),

and
d⟨A⟩t − d⟨B⟩t = 4 d⟨X, Y ⟩t.

Therefore,
d(A2

t −B2
t ) = 4(Xt dYt + Yt dXt) + 4 d⟨X, Y ⟩t.

Dividing both sides by 4, we get:

d(XtYt) = Xt dYt + Yt dXt + d⟨X, Y ⟩t.

3.2 Martingale Property

One useful application of Itô’s lemma is to show the (sub/super)-martingale property of an
Itô process. Let X be an Itô process with the differential form

dXt = µt dt+ σt dBt.

Suppose that the drift term vanishes, i.e., µ· ≡ 0. Then, Xt =
∫ t

0
σs dBs is essentially an Itô

integral, which is a martingale. Similarly, if X has a non-negative (resp. non-positive) drift
term, X will be a sub-martingale (resp. supermartingale).

Example 3.2 Let X be an Itô process with the representation (12). Using Itô’s lemma,
show that

Mt := X2
t −

∫ t

0

(
2µsXs + σ2

s

)
ds

is a martingale.

17



Solution. Let Mt := f(Xt), where f(x) = x2. By Itô’s lemma,

dMt =

(
fx(Xt)µt +

1

2
σ2
t fxx(Xt)

)
dt+ fx(Xt)σt dBt

=

(
2µtXt +

1

2
σ2
t × 2

)
dt+ 2σtXt dBt

=
(
2µtXt + σ2

t

)
dt+ 2σtXt dBt.

Integrating both sides with respect to t, we obtain

Mt −
∫ t

0

(
2µsXs + σ2

s

)
ds = X2

t −
∫ t

0

(
2µsXs + σ2

s

)
ds = X2

0 + 2

∫ t

0

σsXs dBs.

Since the LHS can be represented as an Itô integral, we conclude that the process is a
martingale.

Example 3.3 Suppose that the price of a risky asset {St}t≥0 is given by

St = S0 exp

(∫ t

0

(
µs −

1

2
σ2
s

)
ds+

∫ t

0

σs dBs

)
.

(a) Represent S as an Itô process. Is S a martingale in general?
(b) Let Vt := e−rtSt. Represent V as an Itô process and show that Vt is a martingale

if µ· ≡ r.

Solution.
(a) Let f(x) := ex, and

Xt :=

∫ t

0

(
µs −

1

2
σ2
s

)
ds+

∫ t

0

σs dBs.

By Itô’s lemma,

dSt = df(Xt) = fx(t,Xt) dXt +
1

2
fxx(t,Xt)d⟨X⟩t

= St

[(
µt −

1

2
σ2
t

)
+

1

2
σ2
t

]
dt+ Stσt dBt

= Stµt dt+ Stσt dBt.

Since the drift term does not vanish unless µ· ≡ 0, S is in general NOT a martingale.

18



(b) Let g(t, x) := e−rtx, so that Vt = g(t, St). By applying Itô’s lemma to g(t, St) (or
simply using product rule)

dVt = dg(t, St) = gt(t, St) dt+ gx(t, St) dSt +
1

2
gxx(t, St)d⟨S⟩t

= e−rtSt (−r + µt) dt+ e−rtStσt dBt

= Vt(µt − r)dt+ Vtσt dBt.

If µ· ≡ r, the expression is reduced to

dVt = Vtσt dBt.

In this case, V becomes a martingale.

3.3 Distributions and Computations of Expected Values

Another important use of Itô’s lemma is to compute expected values, especially moments,
of Itô processes. Let X be an Itô process of the form (12). We can take expectation on both
sides to give

E[Xt] = E
[∫ t

0

µs ds

]
+ E

[∫ t

0

σs dBs

]
=

∫ t

0

E [µs] ds.

We can express the above in terms of a differential equation, especially when the drift term
µt depends on Xt:

d

dt
E[Xt] = E[µt].

If the drift term depends on X, then E[Xt] is computed by solving the above differential
equation.

To compute higher moments E[Xp
t ], p ≥ 1, we can apply Itô’s lemma to Xp

t , followed by
deriving the differential equation satisfied by E[Xp

t ].

Example 3.4 Suppose that X is an Ornstein–Uhlenbeck (OU) process which sat-
isfies the following:

dXt = θ(µ−Xt) dt+ σ dBt, X0 = r,

where θ, σ, r > 0 and µ ∈ R. The OU process is also called the Vasicek model in
interest rate models.

(a) Compute E[Xt].
(b) Compute Var[Xt].
(c) Compute limt→∞ E[Xt] and limt→∞ Var[Xt].

Solution.
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(a) Taking expectation on both sides of the equation, we have

dE[Xt] = θ(µ− E[Xt])dt, E[X0] = r,

Equivalently, if we let f(t) := E[Xt], we arrive at following first-order differential
equation:

f ′(t) = θ(µ− f(t)), f(0) = r.

To solve the differential equation, we apply the method of integrating factor: by
multiplying both sides with eθt, we have

d

dt
(eθtf(t)) = eθt(f ′(t) + θf(t)) = θµeθt.

Integrating both sides yields

eθtf(t)− eθ×0f(0) =

∫ t

0

θµeθs ds = µ
(
eθt − 1

)
.

Therefore,
E[Xt] = f(t) = re−θt + µ(1− e−θt).

(b) We need to compute E[X2
t ]. To this end, by applying Itô’s lemma to X2

t , we have

dX2
t = 2Xt dXt +

1

2
(2)d⟨X⟩t

=
(
2θ(µXt −X2

t ) + σ2
)
dt+ 2σXt dBt

Taking expectation on both sides and let g(t) := E[X2
t ] yields

g′(t) = 2θµf(t)− 2θg(t) + σ2, g(0) = r2.

Using the method of integrating factor,

d

dt

(
e2θtg(t)

)
= e2θt (g′(t) + 2θg(t)) = e2θt

(
2θµf(t) + σ2

)
.

Therefore, integrating both sides yields

e2θtg(t)− e2θ(0)g(0) =

∫ t

0

e2θs
(
2θµf(s) + σ2

)
ds

=

∫ t

0

e2θs
[
2θµ

(
(r − µ)e−θs + µ

)
+ σ2

]
ds

=

∫ t

0

[
2θµ(r − µ)eθs +

(
σ2 + 2θµ2

)
e2θs
]
ds
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= 2µ(r − µ)
(
eθt − 1

)
+

σ2 + 2θµ2

2θ

(
e2θt − 1

)
=

(
σ2

2θ
+ µ2

)
e2θt + 2µ(r − µ)eθt −

(
σ2

2θ
+ 2µr − µ2

)
.

Hence,

g(t) = r2e−2θt +

(
σ2

2θ
+ µ2

)
+ 2µ(r − µ)e−θt −

(
σ2

2θ
+ 2µr − µ2

)
e−2θt

=
σ2

2θ
+ µ2 + 2µ(r − µ)e−θt +

[
(r − µ)2 − σ2

2θ

]
e−2θt.

Therefore,

Var[Xt] = g(t)− f 2(t)

= g(t)−
[
(r − µ)e−θt + µ

]2
=

σ2

2θ

(
1− e−2θt

)
.

(c) Using the formula of E[Xt] and Var[Xt],

lim
t→∞

E[Xt] = lim
t→∞

[
(r − µ)e−θt + µ

]
= µ,

lim
t→∞

Var[Xt] = lim
t→∞

σ2

2θ

(
1− e−2θt

)
=

σ2

2θ
.

We present some results that utilize Itô’s lemma to characterize the distributions of pro-
cesses.

Proposition 3.3 Let f be a deterministic function satisfying
∫ T

0
|f(t)|2 dt < ∞. Then,

the Itô integral of f has the following distribution:∫ T

0

f(t) dBt ∼ N
(
0,

∫ T

0

|f(t)|2 dt
)
.

Proof. For t ∈ [0, T ], let Xt :=
∫ t

0
f(s) dBs and Yt := eλXt , where λ ∈ R. Applying Itô’s

lemma to Yt yields

dYt = λYt dXt +
λ2

2
Yt d⟨X⟩t

=
λ2

2
f 2(t)Yt dt+ λYtf(t) dBt.
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Let Mλ(t) := E[Yt] = E[eλXt ], so that λ 7→ Mλ(t) is the mgf of Xt. Using the equation for
Yt, we have

M ′
λ(t) =

λ2

2
f 2(t)Mλ(t).

By multiplying the differential equation with the integrating factor e−
λ2

2

∫ t
0 f2(s) ds, we have

d

dt

(
e−

λ2

2

∫ t
0 f2(s) dsMλ(t)

)
= e−

λ2

2

∫ t
0 f2(s) ds

(
M ′

λ(t)−
λ2

2
f 2(s)Mλ(t)

)
= 0.

Hence,

Mλ(T ) = e
λ2

2

∫ T
0 f2(t) dtMλ(0) = e

λ2

2

∫ T
0 f2(t) dt,

since Mλ(0) = E[eλX0 ] = E[e0] = 1. Note that e
λ2

2

∫ T
0 f2(t) dt is the mgf of the distribution

N (0,
∫ T

0
f 2(t) dt). Therefore, the proof is complete.

In the last chapter, we know that the quadratic variation of a Brownian motion is t. The
following result, proven by Itô’s lemma, shows the converse.

Theorem 3.4 (Lévy’s Characterization) Let {Xt}t≥0 be an adapted process with
X0 = 0. Suppose that:

1. X is a martingale with continuous sample paths;
2. ⟨X⟩t = t for all t ≥ 0.

Then X is a standard Brownian motion.

Proof. Fix λ ∈ R, define the process Yt by Yt := eλXt . By Itô’s lemma and the fact that
⟨X⟩t = t, we have

dYt = λYt dXt +
λ2

2
Yt d⟨X⟩t = λYt dXt +

λ2

2
Yt dt.

Integrating both sides with respect to t, we have

Yt = Y0 + λ

∫ t

0

Ys dXs +
λ2

2

∫ t

0

Ys ds.

Since Xt is a martingale, the integral
∫ t

0
Ys dXs is also a martingale1 Taking expectation on

both sides yields

E[Yt] = 1 +
λ2

2

∫ t

0

E[Ys] ds,

1This can be shown by constructing a general stochastic integral using X as an integrator in place of the
Brownian motion. Alternatively, we can use the martingale representation theorem to represent Xt as
an Itô integral. The details will be covered in the last chapter.
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which is a first-order integral equation. Applying the method of integrating factor, we have
that

E
[
eλXt

]
= E[Yt] = e

λ2t
2 . (25)

Therefore, Xt ∼ N (0, t).

This findings can be used to show that X has independent, stationary, and Gaussian
increment. To this end, fix λ, µ ∈ R and s ≥ 0. For any t ≥ s, we define the process

Zt := eλXs+µ(Xt−Xs) = Yse
µ(Xt−Xs).

By treating s as fixed and applying Itô’s lemma to Zt with respect to t, and using the
quadratic variation of X, we have

dZt = µZt dXt +
µ2

2
Zt dt.

Integrating both sides with from s to t, followed by taking expectations, we have

E[Zt] = E[Zs] + E
[
µ

∫ t

s

dXu

]
+

µ2

2

∫ t

s

E[Zu] du = E[Ys] +
µ2

2

∫ t

s

E[Zu] du.

Solving this integral equations yields

E[eλXs+µ(Xt−Xs)] = E[Zt] = E[Ys]e
µ2(t−s)

2 = e
λ2s
2

+
µ2(t−s)

2 ,

where the last equality follows from (25). Since the joint mgf of (Xs, Xt − Xs) into the
product of the marginals, and both are Gaussian, this proves that (Xs, Xt − Xs) follows a
multivariate normal distribution with covariance matrix(

s 0
0 t− s

)
.

Therefore, X has independent, stationary, and Gaussian increments as desired.

4 Multivariate Stochastic Calculus
Itô’s lemma can be generalized into the following multi-dimensional version, which can be
proven using a similar argument as the one-dimensional Itô’s lemma by considering the
Taylor series expansion of a multivariate function.
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Theorem 4.1 (Multivariate Itô’s Lemma) Let Bt = (Bj
t )

d
j=1 be a d-dimensional

standard Brownian motion, and Xt = (X i
t)

n
i=1 be an n-dimensional Itô process with the

expression

dX i
t = µi

t dt+
d∑

j=1

σi,j
t dBj

t .

Then, for any f : [0,∞)×Rn → R that is of C1,2 (i.e., continuously differentiable in the
t-variable, and twice continuously differentiable in the x-variable),

df(t,X1
t , . . . , X

n
t ) = ft(t,X

1
t , . . . , X

n
t ) dt+

n∑
i=1

∂f

∂xi

(t,X1
t , . . . , X

n
t ) d⟨X i⟩t

+
1

2

n∑
i=1

n∑
k=1

∂2f

∂xi∂xk

(t,X1
t , . . . , X

n
t ) d⟨X i, Xk⟩t

=

[
ft(t,X

1
t , . . . , X

n
t ) +

n∑
i=1

µi
t

∂f

∂xi

(t,X1
t , . . . , X

n
t )

+
1

2

n∑
i=1

n∑
k=1

d∑
j=1

∂2f

∂xi∂xk

(t,X1
t , . . . , X

n
t )σ

i,j
t σk,j

t

]
dt

+
n∑

i=1

d∑
j=1

σi,j
t

∂f

∂xi

(t,X1
t , . . . , X

n
t ) dB

j
t .

The product rule presented in Proposition Theorem 3.2 can be proven by applying the
multivariate Itô’s lemma to f(x, y) = xy. We also have the following generalization of Lévy’s
characterization theorem (Theorem 3.4).

Theorem 4.2 (Multi-dimensional Lévy’s Characterization) Let X =
(X1

t , . . . , X
n
t )t≥0 be an Rn-valued adapted process with X0 = 0. Suppose that:

1. Each component X i is a martingale with continuous sample paths;
2. For all i, j = 1, . . . , n, the cross-variation satisfies

⟨X i, Xj⟩t = δijt =

{
t, if i = j;

0, if i ̸= j
for all t ≥ 0;

Then X is a standard n-dimensional Brownian motion.

Proof. Fix λ1, . . . , λn ∈ R and define the process Yt := f(t,X1
t , . . . , X

n
t ), where

f(t, x1, . . . , xn) := exp

(
n∑

i=1

λixi

)
.
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By the multivariate Itô’s lemma, we have

dYt =
n∑

i=1

∂f

∂xi

(t,Xt) dX
i
t +

1

2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj

(t,Xt) d⟨X i, Xj⟩t

=
n∑

i=1

λi exp

(
n∑

k=1

λkX
k
t

)
dX i

t +
1

2

n∑
i=1

n∑
j=1

λiλj exp

(
n∑

k=1

λkX
k
t

)
d⟨X i, Xj⟩t

= Yt

(
n∑

i=1

λi dX
i
t +

1

2

n∑
i=1

n∑
j=1

λiλj d⟨X i, Xj⟩t

)

= Yt

(
n∑

i=1

λi dX
i
t +

1

2

n∑
i=1

λ2
i dt

)
,

where the last line follows from the fact that ⟨X i, Xj⟩t = t.

By integrating the equation for Yt from 0 to t, and then taking expectations and using
the fact that the stochastic integrals have zero expectation, we have

E[Yt] = 1 +
1

2

n∑
i=1

λ2
i

∫ t

0

E[Ys] ds.

Solving this integral equation yields

E

[
exp

(
n∑

i=1

λiX
i
t

)]
= E[Yt] = exp

(
1

2

n∑
i=1

λ2
i t

)
,

which shows that Xt ∼ N (0, tIn). The independent, stationary, and Gaussian increment can
then be shown by utilizing this finding and following the proof of Theorem 3.4.
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